September 19, 1999 Mitko Hristov Kunchev BABA TONKA High School of Mathematics 18 Ivan Vazov St. ROUSSE 7000, BULGARIA director@mg-babatonka.bg

BRUCE SHAWYER
Department of Mathematics and Statistics
Memorial University of Newfoundland
St. John's, Newfoundland
CANADA. A1C 5S7

<u>Problem 2441.</u> Suppose that D, E, F are the mid-points of the sides BC, CA, AB of $\triangle ABC$. The incircle of $\triangle AEF$ touches EF at X, the incircle of $\triangle BFD$ touches FD at Y, and the incircle of $\triangle CDE$ touches DE at Z. Show that DX, EY, FZ are collinear. What is the intersection point?

Solution 2441. Let AB = c, BC = a, AC = b. Then

$$AE = EC = FD = \frac{b}{2}$$
; $AF = FB = ED = \frac{c}{2}$; $BD = DC = EF = \frac{a}{2}$.

The incircles of the triangles AEF, BFD, CDE touch EF, FD, ED at X, Y, Z respectively. Hence

$$FY = P_{FBD} - BD = \frac{-a+b+c}{4} \; ; \; YD = P_{FBD} - FB = \frac{a+b-c}{4} \; ;$$

$$DZ = P_{EDC} - EC = \frac{a+c-b}{4} \; ; \; ZE = P_{EDC} - CD = \frac{b+c-a}{4} \; ;$$

$$EX = P_{AFE} - AF = \frac{a+b-c}{4} \; ; \; XF = P_{AFE} - AE = \frac{a+c-b}{4} \; .$$
(1)

We calculate an expression

$$\frac{FY}{YD}\frac{DZ}{ZE}\frac{EX}{XF} = \frac{-a+b+c}{a+b-c}\frac{a+c-b}{b+c-a}\frac{a+b-c}{a+c-b} = 1.$$

According to Ceva's theorem we get that DX, EY, FZ are collinear.

From (1) it follows that the excircles of ΔFDE touch its sides at the points X, Y, Z, i. e. the intersection point N is the point of Nagel for ΔFDE .

